Operating Instructions for Thermal Energy Flowmeter for gases **Model: KEC-2** KEC-2 K06/0622 Page 1 of 38 ## I. Foreword Dear customer, thank you very much for deciding in favour of the KEC-2. Please read this installation and operation manual carefully before mounting and initiating the device and follow our advice. A riskless operation and a correct functioning of the KEC-2 are only guaranteed in case of careful observation of the described instructions and notes The instruction manuals on our website www.kobold.com are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (info.de@kobold.com) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee. # Manufactured and sold by: Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim Tel.: +49(0)6192-2990 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com KEC-2 K06/0622 Page 2 of 38 # II. Table of Content | I. | For | eword | 2 | |-----|-----------------|---|-----| | II. | Т | able of Content | 3 | | 1 | Pic | tograms and Symbols | 5 | | • | | | | | 2 | Sig | nalwords according ISO 3864 and ANSI Z 535 | 5 | | 3 | Saf | ety instructions | 6 | | | 3.1 | Intended Use | | | | 3.2 | Installation and commissioning | 7 | | | _ | | | | 4 | | hnical data | | | | 4.1 4.1. | Signal circuits1 Modbus | | | | 4.1. | | | | | | 1.2.1 Aktive | 9 | | | | 1.2.2 Passive | | | | 4.1.
4.1. | | | | | | | | | | 4.2 4.2. | Measuring range flow KEC-2 | | | | 4.2. | | | | | 4.2. | | | | | 4.2. | 1 Measuring range end values "High-Speed Version" | 13 | | 5 | Din | nensions | 4.4 | | | | | | | | 5.1 | Dimension KEC-2 Thread-version | | | | 5.2 | Dimension KEC-2 Flanged-version | 15 | | 6 | Ins | tallation | 16 | | | 6.1 | Pipe/tube requirements | 16 | | | 6.2 | Inlet / outlet runs | 16 | | | 6.2. | 1 Installation of KEC-2 | 17 | | | 6.3 | Alignment Display (Housing) | 17 | | | 6.4 | Tightening torques | 17 | | 7 | Car | anastian diagram | 40 | | | | nnection diagram | | | | 7.1 | Cable glands - clamping ranges | | | | 7.2 | Connector pin assignment | 19 | | | 7.3 | Wire connection | | | | 7.3.
7.3. | | | | | 7.3.
7.3. | 117 | | | | 7.3. | | | | Q | On | pration KEC-2 | າາ | # **Table of Content** | 8.1 M | ain menu (Home) | 22 | |---------|---|----| | 8.1.1 | Intialization | 22 | | 8.2 M | ain menu | 23 | | 8.3 Se | ettings | 23 | | 8.3.1 | | 24 | | 8.3.1 | .1 Input / change tube diameter | 24 | | 8.3.1 | p.a., cagc cocap.a.c ccac. | | | 8.3.1 | .3 Definition of the units for flow, velocity, temperature and pressure | 25 | | 8.3.1 | .4 Definition of the reference conditions | 26 | | 8.3.1 | .5 Setting of Zeropoint and Low-flow cut off | 28 | | 8.3.2 | | | | 8.3.2 | 2.1 Modbus Settings (20012005) | 30 | | 8.3.2 | 2.2 Values Register (10011500) | 30 | | Remark: | | 31 | | 8.3.3 | Pulse /Alarm | 32 | | 8.3.3 | 3.1 Pulse output | 32 | | 8.3.4 | User Setup | 33 | | 8.3.5 | Advanced | 34 | | 8.3.6 | 4 -20mA | 35 | | 8.3.7 | KEC-2 Info | 37 | | 8.4 M | Bus | 37 | | 8.4.1 | Default Settings communication | 37 | | 8.4.2 | Default values transmitted | | | 9 FUD | eclaration of Conformance | 38 | # 1 Pictograms and Symbols General Warning symbol (Danger, Warning, Caution) General note Installation- and Instruction manual to consider (on Nameplate) Installation- and Instruction manual to consider # 2 Signalwords according ISO 3864 and ANSI Z 535 Danger! Imminent danger As a consequence of incorrect handling: serious personal injury or death Warning! Possible hazard As a consequence of incorrect handling: possible serious injury or death Caution! Imminent hazard As a consequence of incorrect handling: possible personal injury or damage Note! Possible hazard As a consequence of incorrect handling: possible personal injury or damage Important! Additional notes, information, tips As a consequence of incorrect handling: Disadvantages in operation and maintenance, no danger KEC-2 K06/0622 Page 5 of 38 # 3 Safety instructions ## Please check whether this manual corresponds with the device type. Please attend to all notes indicated in this instruction manual. It contains essential information, which has to be followed during installation, operation and maintenance. Therefore this instruction manual has to be read categorically by the technician as well as by the responsible user/qualified personnel before installation, initiation and maintenance Regional and national regulations respectively, have to be observed in addition to this instruction manual if necessary. This instruction manual has to be available at any time at the operation site of the DS 500. Ensure that the KEC-2 operates within the permissible and listed limits on the nameplate. Otherwise there is a risk to human and material, and it may occur functional and operational disturbances In case of any obscurities or questions with regard to this manual or the instrument please contact Kobold GmbH.. ## Warning! ## Risk of injury in case of inadequate qualification! Improper handling can result in significant personal injury and damage. All activities described in this operating instructions manual must be carried out only by qualified personnel qualifications described below. ## **Professionals (Technical staff)** The technical staff is based on his education/training, his knowledge of measurement and control technology as well of the local regulations, standards and guidelines in the position to do the work as described and to identify the possible hazards. Special working conditions require further appropriate knowledge, e.g. of aggressive media. #### Caution! ## **Malfunction of KEC-2** Faulty installation and insufficient maintenance may lead to malfunctions of the KEC-2, which may affect the display and open to misinterpretation. ## Danger! ## **Inadmissible operating parameters!** By exceeding or falling short of limits there is a risk for people and material, in addition there may occur further functional and operational disturbances. #### Measures: - Make sure that the KEC-2 operates only within the permissible and listed limits on the nameplate - · Ensure the operation within the performance data of KEC-2 in connection with the application - Do not exceed the admissible storage and transportation temperature. #### Additional safety information: When installing and operating the relevant national regulations and safety rules must also be observed. KEC-2 K06/0622 Page 6 of 38 #### 3.1 Intended Use The instrument described in this manual is exclusively to use for measuring the thermal mass flow of gases. At the same time, the gas temperature is measured too. The KEC-2 can be configured for measuring a predetermined range of pure gases or of gas mixtures. Consumption measurement of gases such as air, oxygen, nitrogen, carbon dioxide, argon, etc. Improper or incorrect use the operational reliability will be canceled. The manufacturer is not liable for any damage resulting by improper or incorrect use. # 3.2 Installation and commissioning - Installation, electrical installation, commissioning, operation and maintenance of the device must only be carried by qualified personnel, which were authorized by the plant operator. The personnel must read the operating instructions and understand and follow their instructions. - If carrying out welding work on the pipeline the grounding of the welding unit is not allowed to be done over the KEC-2 itself. - The installer has to ensure that the KEC-2 is connected according to the electrical connection diagrams properly. The sensor must be grounded, unless special protective measures have been taken (e.g. galvanically isolated power supply) - The existing/ applicable national regulations governing opening and repair of the device have to be applied. - The device fulfills the general safety requirements in accordance with EN 61010-1, the EMC requirements of IEC / EN 61326 and NAMUR recommendation NE 43. KEC-2 K06/0622 Page 7 of 38 # 4 Technical data **Measures:** mass flow, consumption flow speed, temperature Measuring principle: thermal mass flow sensor Medium temperature range: -40 ... 180 °C Probe Operating temperature range: -20 ... 70 °C **Operating pressure:** 50 bar Power supply: 18 ... 36 VDC Power consumption: max. 5 W Output: Modbus RTU (acc. EIA/TIA-485 Standard) 2 x 4...20 mA active (optional passive) RL < 5000hm galvanically isolated pulse (Pulse weight freely selectable, Alarm max. 48 Vdc 0.5 A, optional: HART, ProfibusDP, Profi Net, **Accuracy:** $\pm 1.5 \% \text{ m.v.} \pm 0.3 \% \text{ f.s.}$ Standard version* (m.v. of meas. value) (f.s. of full scale) **Accuracy:** $\pm 1.0 \% \text{ m.v.} \pm 0.3 \% \text{ f.s.}$ Precision version* (m.v. of meas. value) (f.s. of full scale) **Repeatability**: 0,25% m.v in case of correct mounting (mounting aid, position, inlet section **Accuracy indications:** referred to ambient temperature 22 °C +/-2 °C, system pressure 6 bar **Response time:** t90 < 3 s **Display: 2**" TFT Color Display (320 x 240) Material: Housing aluminum die cast, probe stainless steel1,4571 Protection class IP67 KEC-2 K06/0622 Page 8 of 38 ^{*} Reference conditions for Temperature and pressure can be freely set, standard conditions are 0 $^{\circ}$ and 1013 mbar. # 4.1 Signal circuits # **4.1.1 Modbus** • According Standard EIA/TIA-485 # 4.1.2 Current output ## 4.1.2.1 Aktive - Galvanically isolated - 4 ... 20 mA - R_L < 500 Ohm # 4.1.2.2 Passive - Galvanically isolated - 4 ... 20 mA - R_L < 500 Ohm - Vin 12-36 Vdc ## 4.1.3 Pulse - Galvanically isolated (dry contact) - Passive: 48 Vdc , 500 mA - Max. pulse output freq. 50 Hz # 4.1.4 Alarm - Galvanically isolated (dry contact) - Max. 48 Vdc, 500 mA KEC-2 K06/0622 Page 9 of 38 #### Measuring range flow KEC-2 4.2 #### 4.2.1 Measuring range end values "Low Speed" # Measuring ranges low-speed version | Inside | diamet | er of | Low-speed ve | Low-speed version (50 m/s) | | | | | | | | | | | | |--------|--------|-------|----------------|----------------------------|---------------|-----------------------------|---|--|----------------|-------------------------------|--------------------------------|--|--|--|--| | pipe | diamet | ei oi | Measuring rang | ge full scales in | Nm³/h*/[cfm] | | | | | | | | | | | | Inch | mm | DN | Air** | Nitrogen
(N₂) | Argon
(Ar) | Oxygen
(O ₂) | Carbon
dioxide
(CO ₂) | Methane
natural gas
(CH ₄) | Helium
(He) | Hydrogen
(H ₂) | Propane
(C₃H ₈) | | | | | | 1/2" | 16.1 | DN 15 | 20 [14.4] | 20 [13.2] | 35 [20] | 20 [13.5] | 20 [14.1] | 240 NI/min [8.4] | 170 NI/min [6] | 120 NI/min [4.2] | 185 NI/min [6.6] | | | | | | 3/4" | 21.7 | DN 20 | 45 [25] | 40 [25] | 75 [40] | 45 [25] | 45 [25] | 25 [15] | 20 [11.7] | 235 NI/min [8.1] | 20 [12.9] | | | | | | 1" | 27.3 | DN 25 | 75 [45] | 70 [40] | 120 [70] | 75 [40] | 75 [45] | 45 [25] | 30 [15] | 20 [13.5] | 35 [20] | | | | | | 1 1/4" | 36.0 | DN 32 | 140 [80] | 130 [75] | 220 [130] | 135 [80] | 140 [80] | 85 [50] | 60 [35] | 40 [20] | 65 [35] | | | | | | 1 ½" | 41.9 | DN 40 | 195 [115] | 180 [105] | 305 [180] | 185 [110] | 195 [115] | 115 [65] | 80 [45] | 55 [30] | 90 [50] | | | | | | 2" | 53.1 | DN 50 | 320 [190] | 295 [175] | 505 [295] | 305 [180] | 320 [185] | 190 [110] | 135 [75] | 95 [55] | 145 [85] | | | | | | 2½" | 68.9 | DN 65 | 550 [325] | 505 [300] | 865 [510] | 525 [310] | 545 [320] | 325 [190] | 230 [135] | 160 [95] | 250 [150] | | | | | | 3" | 80.9 | DN 80 | 765 [450] | 705 [415] | 1200 [705] | 730 [430] | 760 [445] | 450 [265] | 320 [185] | 225 [130] | 350 [205] | | | | | # Measuring ranges low-speed version (continued) | Inside | diame | ter of | Low-speed ve | ersion (50 m/s) | | | | | | | | |--------|-------|--------|---------------|---|------------------------|--|--|--|--|---------------------------|--| | pipe | diame | ter or | Measuring ran | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Corgon
®18 | Forming gas
90% N ₂ +
10% H ₂ | Natural
gas
(NG) | Biogas
50% CH ₄ +
50% CO ₂ | Biogas
60% CH ₄ +
40% CO ₂ | LPG
60% C ₃ H ₈ +
40% C ₄ H ₁₀ | LPG
50% C₃H ₈ +
50% C₄H ₁₀ | Nitrous
oxide
(N₂O) | Ethyne/
Acetylene
(C ₂ H ₂) | | 1/2" | 16.1 | DN 15 | 35 [20] | 20 [12] | 15 [9] | 15 [10.5] | 15 [10.2] | 215 NI/min [7.5] | 210 NI/min [7.5] | 20 [14.1] | 225 NI/min [8.1] | | 3/4" | 21.7 | DN 20 | 70 [40] | 40 [20] | 30 [15] | 30 [20] | 30 [20] | 25 [15] | 25 [14.7] | 45 [25] | 25 [15] | | 1" | 27.3 | DN 25 | 115 [65] | 65 [35] | 50 [25] | 55 [30] | 55 [30] | 40 [20] | 40 [20] | 75 [45] | 40 [25] | | 1 1/4" | 36.0 | DN 32 | 205 [120] | 120 [70] | 90 [50] | 100 [60] | 100 [55] | 75 [45] | 70 [40] | 140 [80] | 80 [45] | | 1 ½" | 41.9 | DN 40 | 285 [170] | 165 [95] | 125 [70] | 140 [80] | 140 [80] | 105 [60] | 100 [60] | 190 [110] | 110 [65] | | 2" | 53.1 | DN 50 | 470 [275] | 270 [160] | 205 [120] | 235 [135] | 225 [135] | 170 [100] | 165 [95] | 315 [185] | 180 [105] | | 2½" | 68.9 | DN 65 | 805 [475] | 465 [275] | 350 [205] | 400 [235] | 390 [230] | 295 [170] | 285 [165] | 540 [320] | 310 [180] | | 3" | 80.9 | DN 80 | 1120 [660] | 645 [380] | 485 [285] | 555 [325] | 540 [320] | 405 [240] | 400 [235] | 750 [440] | 430 [250] | $^{^{\}star}$ Nm³/h in acc. with DIN 1343: 0 °C, 1013.25 hPa for gases ** ISO 1217: 20 °C, 1000 hPa for air **KEC-2 K06/0622** Page 10 of 38 #### Measuring range end values "Standard Version" 4.2.1 # Measuring ranges standard version | Ineide | diame | ter of | Standard vers | sion (92.7 m/s) | | | | | | | | |--------|--------|--------|----------------|-------------------------------|---------------|-----------------------------|---|---------------------------------|----------------|-------------------------------|---| | pipe | dianie | ter or | Measuring rang | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Air** | Nitrogen
(N ₂) | Argon
(Ar) | Oxygen
(O ₂) | Carbon
dioxide
(CO ₂) | Methane
natural gas
(CH₄) | Helium
(He) | Hydrogen
(H ₂) | Propane
(C ₃ H ₈) | | 1/2" | 16.1 | DN 15 | 45 [25] | 40 [20] | 70 [40] | 40 [25] | 45 [25] | 25 [15] | 15 [11.1] | 220 NI/min [7.8] | 20 [12.3] | | 3/4" | 21.7 | DN 20 | 85 [50] | 80 [45] | 135 [80] | 80 [45] | 85 [50] | 50 [30] | 35 [20] | 25 [15] | 40 [20] | | 1" | 27.3 | DN 25 | 145 [85] | 135 [75] | 230 [135] | 140 [80] | 145 [85] | 85 [50] | 60 [35] | 40 [25] | 65 [35] | | 1 1/4" | 36.0 | DN 32 | 265 [155] | 240 [140] | 415 [245] | 250 [145] | 260 [155] | 155 [90] | 110 [65] | 75 [45] | 120 [70] | | 1½" | 41.9 | DN 40 | 365 [215] | 335 [195] | 570 [335] | 345 [205] | 360 [210] | 215 [125] | 150 [90] | 105 [60] | 165 [95] | | 2" | 53.1 | DN 50 | 600 [350] | 550 [320] | 935 [550] | 570 [335] | 590 [345] | 355 [205] | 250 [145] | 175 [100] | 275 [160] | | 2½" | 68.9 | DN 65 | 1025 [600] | 945 [555] | 1605 [945] | 980 [575] | 1015 [595] | 605 [355] | 425 [250] | 300 [175] | 470 [275] | | 3" | 80.9 | DN 80 | 1420 [835] | 1305 [770] | 2225 [1310] | 1355 [795] | 1405 [825] | 840 [495] | 595 [350] | 415 [245] | 650 [385] | # Measuring ranges standard version (continued) | Inside | diamet | er of | Standard vers | sion (92.7 m/s) | | | | | | | | |--------|--------|--------|---------------|---|------------------------|--|--|--|--|--|--| | pipe | diame | ici oi | Measuring ran | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Corgon
®18 | Forming gas
90% N ₂ +
10% H ₂ | Natural
gas
(NG) | Biogas
50% CH ₄ +
50% CO ₂ | Biogas
60% CH ₄ +
40% CO ₂ | LPG
60% C ₃ H ₈ +
40% C ₄ H ₁₀ | LPG
50% C₃H ₈ +
50% C₄H ₁₀ | Nitrous
oxide
(N ₂ O) | Ethyne/
Acetylene
(C ₂ H ₂) | | 1/2" | 16.1 | DN 15 | 65 [35] | 35 [20] | 25 [15] | 30 [15] | 30 [15] | 20 [14.1] | 20 [13.8] | 40 [25] | 25 [15] | | 3/4" | 21.7 | DN 20 | 130 [75] | 75 [40] | 55 [30] | 60 [35] | 60 [35] | 45 [25] | 45 [25] | 85 [50] | 45 [25] | | 1" | 27.3 | DN 25 | 215 [125] | 120 [70] | 90 [55] | 105 [60] | 100 [60] | 75 [45] | 75 [45] | 140 [85] | 80 [45] | | 1 1/4" | 36.0 | DN 32 | 385 [225] | 225 [130] | 165 [95] | 190 [110] | 185 [110] | 140 [80] | 135 [80] | 260 [150] | 145 [85] | | 1½" | 41.9 | DN 40 | 535 [315] | 310 [180] | 230 [135] | 265 [155] | 260 [150] | 195 [110] | 190 [110] | 355 [210] | 205 [120] | | 2" | 53.1 | DN 50 | 875 [515] | 505 [295] | 380 [220] | 435 [255] | 425 [250] | 315 [185] | 310 [180] | 585 [345] | 335 [195] | | 2½" | 68.9 | DN 65 | 1500 [880] | 865 [510] | 650 [380] | 745 [440] | 725 [425] | 545 [320] | 535 [315] | 1005 [590] | 575 [335] | | 3" | 80.9 | DN 80 | 2075 [1220] | 1205 [705] | 900 [530] | 1035 [605] | 1005 [590] | 755 [445] | 740 [435] | 1395 [820] | 795 [470] | $^{^{*}}$ Nm³/h in acc. with DIN 1343: 0 °C, 1013.25 hPa for gases ** ISO 1217: 20 °C, 1000 hPa for air **KEC-2 K06/0622** Page 11 of 38 # 4.2.1 Measuring range end values "Max Speed Version" # Measuring ranges max version | Inside | diame | ter of | Max version (| 185.0 m/s) | | | | | | | | |--------|-------|--------|----------------|-------------------|---------------|-----------------------------|---|---------------------------------|----------------|-------------------------------|---| | pipe | diame | ter or | Measuring rang | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Air** | Nitrogen
(N₂) | Argon
(Ar) | Oxygen
(O ₂) | Carbon
dioxide
(CO ₂) | Methane
natural gas
(CH₄) | Helium
(He) | Hydrogen
(H ₂) | Propane
(C ₃ H ₈) | | 1/2" | 16.1 | DN 15 | 90 [50] | 80 [45] | 140 [80] | 85 [50] | 90 [50] | 50 [30] | 35 [20] | 25 [15] | 40 [20] | | 3/4" | 21.7 | DN 20 | 175 [100] | 160 [95] | 275 [160] | 165 [95] | 175 [100] | 105 [60] | 70 [40] | 50 [30] | 80 [45] | | 1" | 27.3 | DN 25 | 290 [170] | 270 [155] | 460 [270] | 280 [165] | 290 [170] | 170 [100] | 120 [70] | 85 [50] | 135 [75] | | 1 1/4" | 36.0 | DN 32 | 530 [310] | 485 [285] | 830 [485] | 505 [295] | 525 [305] | 310 [185] | 220 [130] | 155 [90] | 240 [140] | | 1 ½" | 41.9 | DN 40 | 730 [430] | 670 [395] | 1140 [670] | 695 [410] | 720 [425] | 430 [250] | 305 [180] | 215 [125] | 335 [195] | | 2" | 53.1 | DN 50 | 1195 [700] | 1100 [645] | 1870 [1100] | 1140 [670] | 1185 [695] | 705 [415] | 500 [290] | 350 [205] | 550 [320] | | 2½" | 68.9 | DN 65 | 2050 [1205] | 1885 [1110] | 3205 [1885] | 1955 [1150] | 2030 [1190] | 1210 [710] | 855 [500] | 600 [350] | 940 [555] | | 3" | 80.9 | DN 80 | 2840 [1670] | 2610 [1535] | 4440 [2615] | 2710 [1590] | 2810 [1655] | 1680 [985] | 1185 [695] | 830 [490] | 1305 [765] | # Measuring ranges max version (continued) | Inside | diame | ter of | Max version (| 185.0 m/s) | | | | | | | | |--------|-------|--------|---------------|---|------------------------|--|--|--|--|--|--| | pipe | diame | ter or | Measuring ran | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Corgon
®18 | Forming gas
90% N ₂ +
10% H ₂ | Natural
gas
(NG) | Biogas
50% CH ₄ +
50% CO ₂ | Biogas
60% CH ₄ +
40% CO ₂ | LPG
60% C ₃ H ₈ +
40% C ₄ H ₁₀ | LPG
50% C₃H ₈ +
50% C₄H ₁₀ | Nitrous
oxide
(N ₂ O) | Ethyne/
Acetylene
(C ₂ H ₂) | | 1/2" | 16.1 | DN 15 | 130 [75] | 75 [45] | 55 [30] | 65 [35] | 60 [35] | 45 [25] | 45 [25] | 85 [50] | 50 [30] | | 3/4" | 21.7 | DN 20 | 255 [150] | 150 [85] | 110 [65] | 125 [75] | 125 [70] | 90 [55] | 90 [50] | 170 [100] | 95 [55] | | 1" | 27.3 | DN 25 | 430 [250] | 245 [145] | 185 [110] | 210 [125] | 205 [120] | 155 [90] | 150 [90] | 285 [170] | 165 [95] | | 1¼" | 36.0 | DN 32 | 775 [455] | 445 [260] | 335 [195] | 385 [225] | 375 [220] | 280 [165] | 275 [160] | 520 [305] | 295 [175] | | 1½" | 41.9 | DN 40 | 1065 [625] | 615 [360] | 460 [270] | 530 [310] | 515 [305] | 385 [225] | 380 [220] | 715 [420] | 410 [240] | | 2" | 53.1 | DN 50 | 1745 [1025] | 1010 [595] | 755 [445] | 870 [510] | 845 [495] | 635 [375] | 620 [365] | 1170 [690] | 670 [395] | | 2½" | 68.9 | DN 65 | 2995 [1760] | 1735 [1020] | 1300 [765] | 1490 [875] | 1450 [855] | 1090 [640] | 1065 [625] | 2010 [1180] | 1150 [675] | | 3" | 80.9 | DN 80 | 4150 [2440] | 2400 [1415] | 1800 [1060] | 2065 [1215] | 2015 [1185] | 1510 [890] | 1480 [870] | 2785 [1640] | 1590 [935] | $^{^{\}star}$ Nm³/h in acc. with DIN 1343: 0 °C, 1013.25 hPa for gases ** ISO 1217: 20 °C, 1000 hPa for air **KEC-2 K06/0622** Page 12 of 38 #### Measuring range end values "High-Speed Version" 4.2.1 # Measuring ranges high-speed version | Ineida | e diame | ter of | High-speed ve | ersion (224.0 m | n/s) | | | | | | | |--------|---------|--------|----------------|-------------------|---------------|-----------------------------|---|--|----------------|------------------|---| | pipe | diame | ter or | Measuring rang | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Air** | Nitrogen
(N₂) | Argon
(Ar) | Oxygen
(O ₂) | Carbon
dioxide
(CO ₂) | Methane
natural gas
(CH ₄) | Helium
(He) | Hydrogen
(H₂) | Propane
(C ₃ H ₈) | | 1/2" | 16.1 | DN 15 | 110 [60] | 100 [55] | 170 [100] | 105 [60] | 105 [60] | 65 [35] | 45 [25] | 30 [15] | 50 [25] | | 3/4" | 21.7 | DN 20 | 215 [125] | 195 [115] | 335 [195] | 205 [120] | 210 [125] | 125 [70] | 85 [50] | 60 [35] | 95 [55] | | 1" | 27.3 | DN 25 | 355 [210] | 325 [190] | 555 [325] | 340 [200] | 350 [205] | 210 [120] | 145 [85] | 100 [60] | 160 [95] | | 1 1/4" | 36.0 | DN 32 | 640 [375] | 590 [345] | 1005 [590] | 610 [360] | 635 [370] | 380 [220] | 265 [155] | 185 [110] | 295 [170] | | 1½" | 41.9 | DN 40 | 885 [520] | 815 [475] | 1385 [815] | 845 [495] | 875 [515] | 520 [305] | 370 [215] | 260 [150] | 405 [235] | | 2" | 53.1 | DN 50 | 1450 [850] | 1330 [780] | 2265 [1330] | 1380 [810] | 1430 [840] | 855 [500] | 605 [355] | 425 [250] | 665 [390] | | 2½" | 68.9 | DN 65 | 2480 [1460] | 2280 [1340] | 3880 [2285] | 2365 [1390] | 2455 [1445] | 1465 [865] | 1035 [610] | 725 [425] | 1140 [670] | | 3" | 80.9 | DN 80 | 3440 [2025] | 3165 [1860] | 5380 [3165] | 3280 [1930] | 3405 [2000] | 2035 [1195] | 1435 [845] | 1010 [590] | 1580 [930] | # Measuring ranges high-speed version (continued) | Inside | diame | ter of | High-speed v | ersion (224.0 m | n/s) | | | | | | | |--------|-------|--------|---------------|---|------------------------|--|--|--|--|--|--| | pipe | diame | tor or | Measuring ran | ge full scales in | Nm³/h*/[cfm] | | | | | | | | Inch | mm | DN | Corgon
®18 | Forming gas
90% N ₂ +
10% H ₂ | Natural
gas
(NG) | Biogas
50% CH ₄ +
50% CO ₂ | Biogas
60% CH ₄ +
40% CO ₂ | LPG
60% C ₃ H ₈ +
40% C ₄ H ₁₀ | LPG
50% C ₃ H ₈ +
50% C ₄ H ₁₀ | Nitrous
oxide
(N ₂ O) | Ethyne/
Acetylene
(C ₂ H ₂) | | 1/2" | 16.1 | DN 15 | 160 [90] | 90 [50] | 65 [40] | 80 [45] | 75 [45] | 55 [30] | 55 [30] | 105 [60] | 60 [35] | | 3/4" | 21.7 | DN 20 | 310 [185] | 180 [105] | 135 [80] | 155 [90] | 150 [85] | 110 [65] | 110 [65] | 210 [120] | 120 [70] | | 1" | 27.3 | DN 25 | 520 [305] | 300 [175] | 225 [130] | 255 [150] | 250 [145] | 190 [110] | 185 [105] | 345 [205] | 200 [115] | | 1 1/4" | 36.0 | DN 32 | 935 [550] | 540 [320] | 405 [240] | 465 [275] | 455 [265] | 340 [200] | 335 [195] | 630 [370] | 360 [210] | | 1 ½" | 41.9 | DN 40 | 1290 [760] | 745 [440] | 560 [330] | 640 [375] | 625 [365] | 470 [275] | 460 [270] | 865 [510] | 495 [290] | | 2" | 53.1 | DN 50 | 2115 [1245] | 1225 [720] | 920 [540] | 1050 [620] | 1025 [605] | 770 [450] | 755 [440] | 1420 [835] | 810 [475] | | 2½" | 68.9 | DN 65 | 3625 [2130] | 2100 [1235] | 1575 [925] | 1805 [1060] | 1760 [1035] | 1320 [775] | 1290 [760] | 2435 [1430] | 1390 [820] | | 3" | 80.9 | DN 80 | 5025 [2955] | 2910 [1710] | 2180 [1285] | 2500 [1470] | 2440 [1435] | 1830 [1075] | 1790 [1050] | 3375 [1985] | 1930 [1135] | $^{^{\}star}$ Nm³/h in acc. with DIN 1343: 0 °C, 1013.25 hPa for gases ** ISO 1217: 20 °C, 1000 hPa for air **KEC-2 K06/0622** Page 13 of 38 # 5 Dimensions # 5.1 Dimension KEC-2 Thread-version | KEC-2 thread | KEC-2 thread version | | | | | | | | | | | | | |-------------------|----------------------|----------------------------|-----------|------------|-----------|------------|-----------|--|--|--|--|--|--| | Connection thread | Outer pipe dia. [mm] | Inner
pipe dia.
[mm] | L
[mm] | L1
[mm] | H
[mm] | H1
[mm] | A
[mm] | | | | | | | | 1/2" | 21.3 | 16.1 | 300 | 210 | 176.4 | 165.7 | 20 | | | | | | | | 3/4" | 26.9 | 21.7 | 475 | 275 | 179.2 | 165.7 | 20 | | | | | | | | 1" | 33.7 | 27.3 | 475 | 275 | 182.6 | 165.7 | 25 | | | | | | | | 1 1/4" | 42.4 | 36 | 475 | 275 | 186.9 | 165.7 | 25 | | | | | | | | 1 1/2" | 48.3 | 41.9 | 475** | 275 | 189.9 | 165.7 | 25 | | | | | | | | 2" | 60.3 | 53.1 | 475** | 275 | 195.9 | 165.7 | 30 | | | | | | | $^{^{\}star\star}$ Attention: Shortend inlet section! Please observe the recommended minimium inlet section (lenght = 10x inner diameter) KEC-2 K06/0622 Page 14 of 38 #### **Dimension KEC-2 Flanged-version** 5.2 | | | | | | | | Flange I | DIN EN 10 | 92-1 | |----------------------|-------------------------------|-------------------------------|-----------|------------|-----------|------------|------------|------------|--------| | Measuring
section | Outer
pipe
dia.
[mm] | Inner
pipe
dia.
[mm] | L
[mm] | L1
[mm] | H
[mm] | H1
[mm] | ØD
[mm] | ØK
[mm] | n x ØL | | DN 15 | 21,3 | 16,1 | 300 | 210 | 213,2 | 165,7 | 95 | 65 | 4 x 14 | | DN 20 | 26,9 | 21,7 | 475 | 275 | 218,2 | 165,7 | 105 | 75 | 4 x 14 | | DN 25 | 33,7 | 27,3 | 475 | 275 | 223,2 | 165,7 | 115 | 85 | 4 x 14 | | DN 32 | 42,4 | 36 | 475 | 275 | 235,7 | 165,7 | 140 | 100 | 4 x 18 | | DN 40 | 48,3 | 41,9 | 475** | 275 | 240,7 | 165,7 | 150 | 110 | 4 x 18 | | DN 50 | 60,3 | 53,1 | 475** | 275 | 248,2 | 165,7 | 165 | 125 | 4 x 18 | | DN 65 | 76,1 | 68,9 | 475 | 275 | 268,2 | 175,7 | 185 | 145 | 8 x 18 | | DN 80 | 88,9 | 80,9 | 475 | 275 | 275,7 | 175,7 | 200 | 160 | 8 x 18 | Page 15 of 38 KEC-2 K06/0622 # 6 Installation # 6.1 Pipe/tube requirements - · Correctly sized gaskets - Correct aligned flanges and gaskets - Diameter mismatch at the pipe junctions should be avoided but must be less than 1mm. For further information see ISO 14511 - Ensure clean pipes after installation ## 6.2 Inlet / outlet runs The principle of thermal Mass flow measurement is very sensitive against disturbances. Therefore, it is necessary to ensure the recommended inlet and outlet runs. ## **Table Inlet / Outlet runs** | Flow obstruction before the measurement section | Min length
Inlet run (L1) | Min length
Outlet run (L2) | |---|------------------------------|-------------------------------| | Slight curve
(ellbow < 90°) | 12 x D | 5 x D | | Reduction (Pipe narrows to the measurement section) | 15 x D | 5 x D | | Expansion (Pipe expands to the measurement section) | 15 x D | 5 x D | | 90° ellbow or T-piece | 15 x D | 5 x D | | 2x ellbow á 90° in einer Ebene | 20 x D | 5 x D | | 2x ellbow á 90°
3-dimensional | 35 x D | 5 x D | | Control valve | 45 x D | 5 x D | The values represent the min.lenghts. In case the min. inlet / outlet runs could not be ensured, it must be expected to get increased or significant d eviations of the measurement values. KEC-2 K06/0622 Page 16 of 38 ## 6.2.1 Installation of KEC-2 The sensor KEC-2 is pre-supplied with the measuring section. # 6.3 Alignment Display (Housing) The sensor housing KEC-2 can be turned in both directions, max. 345°. For this purpose, the housing-connecting nut must be opened. The housing can be rotated to the desired position, a bigger rotation angle is prevented by internal stop pins. After that, the housing-connecting nut is firmly retighten # 6.4 Tightening torques To secure and guarantee of the function and tightness following tightening torques have to be applied, see table 1. Table 1 | Pos | Description | Tightening torque [Nm] | |-----|--|------------------------| | 20 | KEC-2 cover with glass | 3 | | 30 | KEC-2 cover without window | 3 | | 50 | Grub screw with hexagon socket M4x6 DIN 914 A2 | 2 | | 130 | KEC-2 nut | 15 | | 150 | Cylinder screw DIN 6912 - M5x10 A2-70 | 4 | KEC-2 K06/0622 Page 17 of 38 # 7 Connection diagram # 7.1 Cable glands - clamping ranges For ensuring the tightness and strain relief, connector cables with the following diameters must be used. KEC-2 Standard clamping range : Ø 5-9 mm KEC-2 K06/0622 Page 18 of 38 # 7.2 Connector pin assignment | Connector | Pin | Signal description | |--------------------------|-----|--------------------| | X1
Power
supply | 1 | VB - (GND) | | × od ons | 2 | VB+ (12V – 36 Vdc) | | | 1 | Modbus (B) | | X2
Modbus | 2 | Modbus shield | | | 3 | Modbus (A) | | X3 | 1 | I- Aktiv | | X3 | 2 | I+ Aktiv | | ± | 1 | Pulse / Alarm * | | 4 Pulse | 2 | Pulse / Alarm * | | X4
Direction / Pulset | 3 | Direction input | | | 4 | GND | | X5
Current output | 1 | I- Active** | | Current | 2 | I+ Active ** | | X6
Current output | 1 | I- Active ** | | X Current | 2 | I+ Active ** | | K1
MBus | 1 | MBus | | ⊼ Ã | 2 | MBus | ^{*} Outputs are galvanically isolated. KEC-2 K06/0622 Page 19 of 38 ^{**} The Current outputs, X5 and X6, are optional.(Active and passive version available). # 7.3 Wire connection ## **7.3.1** General: - Wiring to be done in strainless state only. - Length of cable skinning to be minimized - Not used cable entries must be closed with end caps - Use of cables with cross section of >= 0.25 mm² # 7.3.2 Power supply # 7.3.3 Modbus (termination): If the sensor placed at the end oft he Modbus system a termination is required. Therfore the enclosed 120R resistor ist o be connected at Pin 1 and Pin 3 of connector "X2" KEC-2 K06/0622 Page 20 of 38 # 7.3.4 Pulse Output KEC-2 K06/0622 Page 21 of 38 # 8 Operation KEC-2 The operation of the KEC-2 are carried out by 2 optical keys through the glass cover Thus, the KEC-2 can be operated from the outside without opening the cap. Selection of the individual menu items is done by pressing the ">" and confirm by pressing "OK". Inputs or changes can be made with all white deposit fields, selcted filed will be highlighted with yellow background. Words in green font refer mainly to the pictures in the section of the chapter, but also on important menu paths or menu items that are related to are in green font. The menu navigation is generally in a green font! The table of contents and chapter references in blue font contain links to the respective chapter title. # 8.1 Main menu (Home) ## 8.1.1 Intialization After switching on the KEC-2 the initialized screen is displayed followed by the main menu. KEC-2 K06/0622 Page 22 of 38 ## 8.2 Main menu | *** Average Min Max *** | | | | | | | | |-------------------------|-----|-----|-------|--|--|--|--| | Flow: m³/h | ٩V | Min | Max | | | | | | 395.38 | | | 0 | | | | | | 391.23 | | 41 | 10,34 | | | | | | Total Counter: r | n³ | | | | | | | | 78562 | | | | | | | | | 391 | | | | | | | | | AV-Time: 1 minu | tes | | 3/4 | | | | | | *** Average Min M | | |-------------------|---------| | Velocity: m/s AV | Min Max | | 83.25 | 0 | | 82.46 | 91,32 | | Temperature: °C | | | 24.1 | 21.3 | | 23.7 | 24.6 | | AV-Time: 1 minute | 4/4 | AV-Time (Period for average value calculation) could be changed under Sensor Setup.-Advanced— AV-Time ## 8.3 Settings The settings menu could accessed by pressing the key "OK". But the access to the *settings menu* is password protected. Factory settings for password at the time of delivery: 0000 (4 times zero). If required the password could be changed at Setup–User setup-Password. KEC-2 K06/0622 Page 23 of 38 Selection of a menu item or to change a value is done with the key $, \triangle$ ", a final move to the chosen menu item or takeover of the value change needs the confirmation by pressing the key ,OK" # 8.3.1 Sensor Setup ## Setup → Sensor Setup For changes, first select the menu item with key "△ "and then confirm it with "OK". ## 8.3.1.1 Input / change tube diameter For KEC-2 not adjustable (suspended) as voted on included measuring section with corresponding pipe diameter. KEC-2 K06/0622 Page 24 of 38 ## 8.3.1.2 Input / change consumption counter ## Setup → Sensor Setup→ Total Counter → Unit button In order to change, e.g. the unit, first select by pressing key $_\Delta$ "the button "Unit" and then key "OK". Select with the key $,\Delta$ "the correct unit and then confirm selection by pressing 2x ,OK". Entering / changing the consumption counter via button " Δ ", select the respective position and activate the position with the "OK" button. By pressing $_{n}\Delta$ "the position value is incremented by 1. Complete with "OK" and activate next number position. Confirm entry by pressing "OK". ## Important! When the counter reach 100000000 m³ the counter will be reset to zero. ## 8.3.1.3 Definition of the units for flow, velocity, temperature and pressure Setup → Sensor Setup → Units To make changes to the unit for the respective measurement value, first select by pressing $_\Delta$ "the field of the "measurement value" and activate "it with $_OK$ ". Selection of the new unit with "△" In case the quantity of units selectable are not presentable on one page, pleas move to next page by pressing "<<". Confirm selection by pressing 2x "OK". Procedure for all 4 measurement-variables is analogous. KEC-2 K06/0622 Page 25 of 38 ## 8.3.1.4 Definition of the reference conditions Here can be defined the desired measured media reference conditions for pressure and temperature and times for the filter and averaging. - Factory pre-setting for reference temperature and reference pressure are 20 °C, 1000 hPa - All volume flow values (m³/h) and consumption values indicated in the display are related to 20 °C and 1000 hPa (according to ISO 1217 intake condition) - Alternatively 0 °C and 1013 hPa (=standard cubic meter) can also be entered as a reference. - Do not enter the operation pressure or the operation temperature under reference conditions! Setup → Sensor Setup→ Advanced To make changes, first select a menu with button $_\Delta$ "and confirm selection by pressing $_OK$ ". Setup → Sensor Setup → Advanced → Ref.Pref Setup \rightarrow Sensor Setup \rightarrow Advanced \rightarrow Ref.Temp In order to change, e.g. the unit, first select by pressing key $_{n}\triangle$ "the field "Units" and then key "OK". Select with the key $,\Delta$ "the correct unit and then confirm selection by pressing 2x ,OK". Input / change of the value by selecting the respective position with button " \triangle "and entering by pressing button "OK". By pressing " \triangle " the position value is incremented by 1. Complete with "OK" and activate next number position. Procedure for changing the reference temperature is the same. KEC-2 K06/0622 Page 26 of 38 # Setup → Sensor Setup→ Advanced → Filtertime Under item "Filtertime" " an attenuation can be defined. Input values of 0 -10000 in [ms] are possible Setup → Sensor Setup→ Advanced → AV-Time The time period for averaging can be entered here. Input values of -1440 1 [minutes] are possible. For average values see display window 3 + 4 KEC-2 K06/0622 Page 27 of 38 ## 8.3.1.5 Setting of Zeropoint and Low-flow cut off # Setup → Sensor Setup→ ZP Adjust To make changes, first select a menu with button $,\Delta''$ and confirm selection by pressing ,OK''. Setup → Sensor Setup → ZP Adjust → ZeroPnt When, without flow, the installed sensor shows already a flow value of > 0 m³/h herewith the zero point of the characteristic could be reset. For an input / change of the value select with the button " Δ " the respective number position and activate it with "OK". By pressing "△" the position value is incremented by 1. Confirm the input with "OK" and activate next number position. Leave menu with button "Back" Setup → Sensor Setup → ZP Adjust → CutOff With the low-flow cut off activated, the flow below the defined "LowFlow Cut off" value will be displayed as 0 m³/h and not added to the consumption counter. For an input / change of the value select with the button " \triangle " the respective number position and activate it with "OK". By pressing " \triangle " the position value is incremented by 1. Confirm the input with "OK" and activate next number position. Leave menu with button "Back" Setup \rightarrow Sensor Setup \rightarrow ZP Adjust $t \rightarrow$ Reset By selection of "Reset" all settings for "ZeroPnt" and. "CutOff" are reset. Menu item to be select with button " \triangle " and confirm the reset with "OK". Leave menu with button "Back" KEC-2 K06/0622 Page 28 of 38 # 8.3.2 Modbus Setup The Flow sensors KEC-2 comes with a Modbus RTU Interface. Before commissioning the sensor the communication parameters Modbus ID, Baudrate, Parity und Stop bit must be set in order to ensure the communication with the Modbus master. ## Settings → Modbus Setup For changes, e.g. the sensor ID, first select by pressing key "△" the field "ID" and then key "OK". Select the desired position by pressing the ">" and select with "OK" button. Change values by pressing the "△" values takeover by pressing "OK". Inputs for remaining information is analog. Saving the changes by pressing "Save", therefore select it first with key "△" and afterwards confirm it with "OK". **Default values out of factory:** Modbus ID: 1 Baud rate: 19200 Stopbit: 1 Parity: even **Remark**: If the sensor placed at the end of the Modbus system a termination is required. Therefore the enclosed 120R resistor is to be connected at Pin 1 and Pin 3 of connector "X2" button "Set to Default" KEC-2 K06/0622 Page 29 of 38 # 8.3.2.1 Modbus Settings (2001...2005) | Modbus
Register | Register
Address | No.of
Byte | Data Type | Description | Default
Setting | Read
Write | Unit /Comment | |--------------------|---------------------|---------------|-----------|--------------------|--------------------|---------------|--| | 2001 | 2000 | 2 | UInt16 | Modbus ID | 1 | R/W | Modbus ID 1247 | | 2002 | 2001 | 2 | UInt16 | Baudrate | 4 | R/W | 0 = 1200
1 = 2400
2 = 4800
3 = 9600
4 = 19200
5 = 38400 | | 2003 | 2002 | 2 | UInt16 | Parity | 1 | R/W | 0 = none
1 = even
2 = odd | | 2004 | 2003 | 2 | UInt16 | Number of Stopbits | | R/W | 0 = 1 Stop Bit
1 = 2 Stop Bit | | 2005 | 2004 | 2 | UInt16 | Word Order | 0xABCD | R/W | 0xABCD = Big Endian
0xCDAB = Middle Endian | # 8.3.2.2 Values Register (1001 ...1500) | Modbus
Register | Register
Address | No.of
Byte | Data Type | Description | Default | Read
Write | Unit /Comment | |--------------------|---------------------|---------------|-----------|------------------|---------|---------------|---------------| | 1101 | 1100 | 4 | Float | Flow in m³/h | | R | | | 1109 | 1108 | 4 | Float | Flow in Nm³/h | | R | | | 1117 | 1116 | 4 | Float | Flow in m³/min | | R | | | 1125 | 1124 | 4 | Float | Flow in Nm³/min | | R | | | 1133 | 1132 | 4 | Float | Flow in ltr/h | | R | | | 1141 | 1140 | 4 | Float | Flow in Nltr/h | | R | | | 1149 | 1148 | 4 | Float | Flow in ltr/min | | R | | | 1157 | 1156 | 4 | Float | Flow in Nltr/min | | R | | | 1165 | 1164 | 4 | Float | Flow in ltr/s | | R | | | 1173 | 1172 | 4 | Float | Flow in Nltr/s | | R | | | 1181 | 1180 | 4 | Float | Flow in cfm | | R | | | 1189 | 1188 | 4 | Float | Flow in Ncfm | | R | | | 1197 | 1196 | 4 | Float | Flow in kg/h | | R | | | 1205 | 1204 | 4 | Float | Flow in kg/min | | R | | | 1213 | 1212 | 4 | Float | Flow in kg/s | | R | | | 1221 | 1220 | 4 | Float | Flow in kW | | R | | KEC-2 K06/0622 Page 30 of 38 # Operation | Modbus
Register | Register
Address | No.of
Byte | Data
Type | Description | Default | Read
Write | Unit /Comment | |--------------------|---------------------|---------------|--------------|-------------------------------|---------|---------------|---------------| | 1269 | 1268 | 4 | UInt32 | Consumption m³ before comma | х | R | | | 1275 | 1274 | 4 | UInt32 | Consumption Nm³ before comma | х | R | | | 1281 | 1280 | 4 | UInt32 | Consumption ltr before comma | х | R | | | 1287 | 1286 | 4 | UInt32 | Consumption Nltr before comma | х | R | | | 1293 | 1292 | 4 | UInt32 | Consumption of before comma | х | R | | | 1299 | 1298 | 4 | UInt32 | Consumption Ncf before comma | х | R | | | 1305 | 1304 | 4 | UInt32 | Consumption kg before comma | х | R | | | 1311 | 1310 | 4 | UInt32 | Consumption kWh before comma | х | R | | | 1347 | 1346 | 4 | Float | Velocity m/s | | | | | 1355 | 1354 | 4 | Float | Velocity Nm/s | | | | | 1363 | 1362 | 4 | Float | Velocity Ft/min | | | | | 1371 | 1370 | 4 | Float | Velocity NFt/min | | | | | 1419 | 1418 | 4 | Float | GasTemp °C | | | | | 1427 | 1426 | 4 | Float | GasTemp °F | | | | # Remark: For more additional Modbus values please refer to KECXX_Modbus_RTU_Slave_Installation_1.00_EN.doc KEC-2 K06/0622 Page 31 of 38 ## 8.3.3 Pulse /Alarm # Setup → Sensor Setup→ Pulse/ Alarm The galvanically isolated output can be defined as pulse- or alarm output. Selection of field "Relay Mode" with key "△" and change modus by pressing key "OK". For alarm output following units could be chosen: kg/min, cfm, ltr/s, m³/h, m/s, °F, °C and kg/s. "Value" defines the Alarm value, "Hyst." defines the desired hysteresis and with "Hi-Lim" or. "Lo-Lim" the alarm settings when the alarm is activated Hi-Lim: Value over limit Lo-Lim: Value under limit For the pulse output following units could be chosen: kg, cf, ltr and m³. The pulse value definition to be done in menu "*Value*" (0.1, 1, 10, 100). With "Polarity" the switching state could be defined. Pos. = $0 \rightarrow 1$ neg. $1 \rightarrow 0$ ## 8.3.3.1 Pulse output The maximum frequency for pulse output is 50 pulses per second (50Hz). The Pulse output is delayed by 1 second. | Pulse value | [m³ /h] | [m³/min] | [l/min] | |---------------------------|---------|----------|---------| | 0.1 ltr / Pulse | 1,8 | 0,3 | 300 | | 1ltr / Pulse | 18 | 3 | 3000 | | 0.1m ³ / Pulse | 18000 | 300 | 300000 | | 1 m³ / Pulse | 180000 | 3000 | 3000000 | Table 1 Maximum flow for pulse output Entering pulse values that are not allow a presentation to the full scale value, are not allowed. Entries are discarded and error message displayed. KEC-2 K06/0622 Page 32 of 38 ## 8.3.4 User Setup # Settings → UserSetup To make changes, first select a menu with button $_\Delta$ and confirm selection by pressing $_OK$. It is possible to define a password. The required password length is 4 digits. Please select with button " \triangle " a figure and confirm it with "OK". Repeat this 4 times. With "<" the last figure could be deleted. Password input have to be inserted twice. Confirmation of input/password by pressing "OK". With "Brightness" it is possible to adjust the backlight / display brightness. By activation "Dimming after" and entering a time a display dimming could be set. With "Rotate Screen" the display information could be rotated by 180°. Currently 4 languages have been implemented and could be selected with button $,\Delta$ ". Change of language by confirming with "OK". Leaving the menu with button "back". KEC-2 K06/0622 Page 33 of 38 # 8.3.5 Advanced # Settings → Advanced By pressing "Factory Reset" the sensor is set back to the factory settings. KEC-2 K06/0622 Page 34 of 38 ## 8.3.6 4 -20mA ## Settings → 4-20mA To make changes, first select a menu with button $_\Delta$ and confirm selection by pressing $_OK$. ## Settings → 4-20mA → Channel 1 The 4-20 mA Analogue output of the Sensor KEC can be individually adjusted. It is possible to assign following values "*Temperature*", "*Velocity*" und "*Flow*" to the channel CH 1. To make changes, first select the value item with button $,\Delta$... and confirm Moving between the different measurements values or to deactivate the 4-20mA with setting to "unused" by pressing "OK". To the selected measurement value a corresponding / appropriate unit needs to be defined. Select "Unit" with " Δ " and open menu with "OK". Select required unit with $,\Delta$ "and take over by pressing ,OK". Here e.g. for the measurement value Flow, procedure for the other measurements values is analog. For saving the changes done press button "Save" to discard the changes press button "Cancel". Leaving the menu with "Back". Settings → 4-20mA → Channel 1 → AutoRange KEC-2 K06/0622 Page 35 of 38 The scaling of the 4-20mA channel can be done automatically "Auto Range = on" or manual "AutoRange = off". With button $,\Delta''$ select the menu item "AutoRange" select with ,OK'' the desired scaling method. (Automatically or manually) In case of *AutoRange* = *off* with "*Scale 4mA*" und "*Scale 20mA*" the scale ranges needs to be defined. Select with button $,\Delta''$ the item ,Scale 4mA'' or ,Scale 20mA'' and confirm with ,OK''. Input of the scaling values will be analogous as described before for value settings. Using "CLR" clears up the complete settings at once. For "Auto on", the max. scaling is calculated based on the inner tube diameter, max. measurement range and the reference conditions settings. Take over of the inputs with "Save" and leaveing the menu with "Back". ## Settings → 4-20mA → Error Current This determines what is output in case of an error at the analog output. - 2 mA Sensor error / System error - 22 mA Sensor error / System error - None Output according Namur (3.8mA 20.5 mA) 4mA to 3.8 mA Measuring range under range >20mA to 20.5 mA Measuring range exceeding To make changes first select a menu item "Current Error" with button " Δ " and then select by pressing the "OK" the desired mode For saving the changes done press button "Save" to discard the changes press button "Cancel". Leaving the menu with "Back". KEC-2 K06/0622 Page 36 of 38 ## 8.3.7 KEC-2 Info # Setup → Sensor Setup → Info Here you get a brief description of the sensor data incl. the calibration data. Under *Details*, you are able to see in addition the calibration conditions. ## 8.4 MBus # 8.4.1 Default Settings communication Primary Adress*: 1 ID: Serialnumber of Sensor Baud rate*: 2400 Medium*: depending on medium (Gas or Compressed Air) Both addresses, Primary address and ID, could be automatic searched in the M-Bus system. ## 8.4.2 Default values transmitted Value 1 with [Unit]*: Consumption [m³] Value 2 with [Unit]*: Flow [m³/h] Value 3 with [Unit]*: Gas temperature [°C] *All Values could be changed / preset in production or with Kobold Service software KEC-2 K06/0622 Page 37 of 38 # 9 EU Declaration of Conformance We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product: Thermal Energy Flowmeter for gases Model: KEC-2 to which this declaration relates is in conformity with the standards noted below: **EN 55011:2016 + A1:2017** Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement **EN 61326-1:2013** Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements Also the following EU guidelines are fulfilled: 2014/30/EU EMC Directive 2011/65/EU RoHS **2015/863/EU** Delegated Directive (RoHS III) Hofheim, 14 Oct. 2021 H. Volz General Manager M. Wenzel Proxy Holder ppa. Wully KEC-2 K06/0622 Page 38 of 38